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I. INTRODUCTION

Let f: R R R be continuous and x tR. The orbit of x under f is defined

as the set {x: x fn(x 0), n = 0,1,...), where, for every positive integer

n, fn is the n-th iterate of f, fl = f, and f0 (x0) = x0. We shall write

xn :=fn(x0 ) for a given x 0R and call xl,x 2,... the successors of x0 • A

pre-orbit of a given x0zR is any (finite or infinite) sequence x0, xl, x 2 ,.•

such that f(x) - X_(ni) for all n for which x is defined. The points x

x2,...in any such sequence are called predecessors of x0. A point c0 is

called critical if f(c0 ) - C i.e., a critical point of f is a fixed point of

f. A periodic point x0 of period p > 1 (p a positive integer) is a point for

which the relations fP(x0) x0, fk(x0  x0, I a k z p, hold. If x0 is a

periodic point of period p, its orbit is denoted by (x0, x1, ... ,xp_). We

shall denote the kth iterate ofx 0 under the function fD by xm, k = 0,1,".

Thus x : (f)k(xO  xmk, and, in particular, xmB = x x for all
k00 k 0foal

nonnegative integers k and m.

Definition. Let f: R 4 R be continuous and x0 z R. f has a loop of order

n if x0 has a pre-orbit (x0,x-1 ,... ,x) such that either

0 _n -(n-1) . 2 - l.
or

x >x _>X_ >...>x_ > x
0 -n -(n-i) 2 -

f has an infinite loop if x0 has an infinite pre-orbit (x0, x,...,x_,...)

such that either
x 0  < ..< x n  < X-(n- 1) <••. <x_2  < x_ 1  ..

or
> > x n  > X_(n 1 ) >. . > X_2  > X 1 F

A loop of order (n - I) is called an n-periodic loop if x= Xn

We adopt the following concise notation: we say property P(k)

holds if f has a periodic orbit of period k. Thus P(1), L(k), L(e) mean that f

has a critical point, a periodic loop of period k, an infinite loop, respectively. I'

-*' Similarly, pn(k), Ln(k), Ln(-) shall mean that fn has a k-periodic orbit, i
N. N

* k-periodic loop, an infinite loop, respectively.

5% **J
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In this notation, Sarkovskii's theorem and our refinement read as follows.

Theorem (Sarkovskii). Let f: R 4 R be continuous. Then

P(2-3) ==> P(25) 2 => P(2- .7)--> .....P(2.2 3) => P(2;5 => ---- ..---

P(23 P(2 2  P(2) -: P~ll.

Theorem (SR). Let f: R - R be continuous. Then -..

L(a) ...==0 L(5) ==> L(4) =>L(3)<=>""

P(3) => P(5) => P(7) >...=>

L2().. .==L 2 (5) ==> L2 (4) => L2 (3) <==>

P(2.3) ==> P(2.5) ==> P(2.7) ==>....2 02 2 L 2 (""

L (-).. .=-> I(5) -=> I(4) => L-(3)
2 ~ 22

P(22.3) ==> P(2 5) ==>P(22.7)==>..-

.=-' P(23) ==> P(22) ==> P(2) ="> P(1).

A. N. Sarkovskii obtained the fundamental result which bears now his name in

his seminal paper' of 1964. The purpose of this paper is to prove Theorem

(SR).

II. LEM.ENTARY LEMMAS

It follows from the definition of a periodic loop that every three-periodic

orbit is a three-periodic loop and that an (n + 1)-periodic loop implies the

existence of a loop of order n.

Lemma 2.1. If f has a critical point co such that < c 2 < c, f has an

infinite loop satisfying

c < ...< C < ....< c_ < c_
C0  -n 2'l 1L~

The same statement holds with all inequalities reversed.

Proof. Since -2-1 and co < C_, there exists c_3 (c 0 , c 2 ).

Repeating this argument establishes the lemma.

Lemma 2.2. If f has a critical point co such that c- < C 3 < co < C_2 , c has P -

A. N. Sarkovskii,"Coexistence of cycles of a continuous map of a line into

itself:'Ukrain. Mat. Zh. 16 (1964), 61-71.

": -.-

6 5-. "

%~~**.



an infinite pre-orbit satisfying

C_ < cs < ... < c o  < c < ca

1) Reetn thi4s-

In particular, f has two infinite loops. The same statement holds with allinequalities reversed•. '-

Proof. Since f(c c < c- and c c , there exists c r(ct c_ ) and"-
since f(c_3 )=c_-2 > c_-4 > cot there exists c-,5(c_3, Co). Repeating this "

i n-periodic orbit of f9.

e 0r in patclr a

n)ne show tha p2n) === the.prof of tee. a
ncet P ( it o f., 0 " - is an n-periodic orbit of f2 thewsubsesi i_,I

conide t s { x2 = 2 = x 2  x ( x If x X
Tsithe set and ,ar oXnpt where 2- C2n n a C' 0 k

Otherwisther e is a smallest odd k, < k < 2n, such that x 0 = x i.e., x

is an odd-periodic point of f. But then, by Sarkovskii's theorem, f has
periodic orbits of every even period and, therefore, in particular, a -. "

2n-periodic orbit. Hence Pn) =-) P(2n) and the proof of the lemma is nt.complete. ."

111. PRINCIPAL RESULTS ,

Let e=(x,,xl, ...,t×n-l) be any n-periodic orbit of f. We define the subsets.

C+  {x.tc:z xi > x }  C- {x CxiC: xi+ < xi,....
D+ =(x.CC: x > X > x D- (x tC: X < x < xi

Si 2  xi+ 1  xi} i  xi+ 2  xi+ 1  • .-'

The sets C+ and C- are non-empty since min C t C+ and max C t C-. Letting ''e.
further a0 = rain C4" (= rain C), b = max C+ , ao =mrin C-, and b0 = max C-

(max C), it is clear that either a+ & b0 < a0 A b0 or a+ < a0 < b0 < bo.'

Theorem 3.. if ao d b0 e a0 A bO and D+ u D- z 0, f has a critical point c o  ¢

such that f2 has two infinite loops (d2 , 1 ,d 2
2 ,...) and (c2 , c2  2

0 0'f -1 ...- 2'
satisfying

47
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< ... <d d2 c c2< ... < -c

2
In particular, L (a) holds.

Proof. It is sufficient to assume that D+  4 *. Then, if we let P0= max D+ ,

we have

+ + + + + b
a 0  <P b 0 < a 0  P2  b o,

and conclude the existence of a critical point c and a predecessor c such

Wea cosdrno h et.=1 :x 1 < 1 . Eisnneptic
a 0 0

a -- +- + +-h

Thi hoseno tha set E- {x c a Cr 1 < C 1 t Ere eis aonpredecesore

such that ...'

++ + -

+
a A r_ < b0 < bo < c < a-r0  A b "-N

0  1 1 0 (r 0 'b 0

Our construction implies that 'N

(i) if xitC+ and xi > c.1, then xi+ltC-

(ii) if x iC and x < r., then x i+ > C 1.,

1Hence, there is an x. t C+ , x > C_ such that x i+ t r. For otherwise we

have b (C rO) for all i, contradicting the fact that C is the orbit
aiosme~) 0

6z++ + +of (thus b.' = ao for some i > 1). We now choose 6 0C + such that

60 > C and 6 h r0 to obtain

a - 1 < 6 bo < c < c- < ro A 6+ a b-
0uu0 0 0 1 0'

But this implies that we may choose a predecessor c 3 in the interval (C,

6), and hence that cO and its predecessors c, c 2 , and c 3 satisfy the

8
S... :



inequality cl < c_3 < co < c-2. Appeal to Lemma 2.2 completes the proof.,*

Theorem 3.2. If b , there exist critical points d0 , co of f and

two infinite loops (do , d_2 ...) and (C, C , c 2,...) of f satisfying
d-l  < d 2  < ... < d0 0 c0  < ... < c_2  < C-,.

In particular, L(-) holds.

Proof. We note first that there is ac^ t C and + C + such that

(i) a+ < a- 6 < P+ 6 b+ < b-

0 0 0 0 0 .-

(ii) if xi t C, then x 6 aO0 or xi  Po

(iii) if xi z C and a0 < xi A b+, then xi t C.

+
(iv) if xi z C and bo < xi a bo, then xi a C.

We now show that there are predecessors c_l and c-2 of the critical point c 0

( C 0 , P) that satisfy the inequality co < c 2 < cl. The set A = {xiCC :x.> 0  0 0i+ 2 0} is no-it

> and x a0 ) is non-empty (otherwise Pn h0 for all integers n a 0, a
+0contradiction). Let r = min A . We have r0 > b0 and observe that the set

+ + + +
A {xi C C : xi bo and xi+ b rO } is non-empty (since otherwise Pn

i 0 r~ fo n hos n
will satisfy P0 a Pn < ro for n & 0, a contradiction). We choose any y A 0
and have ".- .

a c b+ < r a b0 C0 
< P YO b<r 0 'b.

Hence

CO < c-2 < Y; " bo < c-_ <0r bo' "0"
c0  c 2 <y 0  0b < 1 < 0

where the existence of c- follows from b I > co and r c and that of c

from c < C_ and y & r0 > C_. The infinite loop (coclc 2,..) satisfying

c < ... < c2 < c 1 follows from aes 2.1. An analogous procedure locates a

critical point d0 and predecessors d1l, d_ such that d- <d < (d 'C 0

and hence an infinite loop (do, d_1, d_2,...) satisfying d1 < d 2 < .. < do  "

20~~. ...1 2
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co. This completes the proof.

Theorem 3.3. If f has a loop of order n b 3, f has two distinct n-periodic

loops. In particular, L(n) holds.

Proof. Let (x0, X-, ... ,x ) be a loop of order n b 3 of f such that

x 0  < x n  < ... < x_2 < X_ .V ' ;

Since there is a critical point ct (x_2,xl), there are predecessors C_l , .

c_2 ... C-(n-2) such that

< < C < X < ... < c_< x < c 0 < xlx0 <x n  -(n-2) -(n-1) 1.2 ...

We consider now the set

S (- Yo R: Yn < Yo < c (-) < Y """  Y-3 - < Yn- < co < yn "  '"

The set S is non-empty since x t S and open since f is continuous. Let V"

(a0, b0 ) be the component of S such that x_n C (80, b0). Since C(n_2) S

and y0 t (o,' b0) implies yo < C_( 2 ) we must have

-. ' a0 < b0 < C_n .

We first note that a0 > -o. This is so because for every y0 a (80 b0) we

have Yn < Y0 and Yn f2 ([C , co] which is a compact set. Thus y0  rin

_1f2(c 1 , co]) > This implies a0 min f2 ([c_1, c]) > -a. Since ao, b /S

and y0 r (ao, bO) implies yo t S, we conclude by the continuity of f that

a n a0 < C_(n-2) < a1 < ...< an-3 < c-1 < an-2 < c0 < a n-l
and . .

b = b0  C_(n2) < b1 < ... < bn 3 < c_1 < bn 2 < c0 < b n_.

Bence both a0 and b0 are n-periodic points, and since a0 < b0 < b1 < ... <
bn~, the orbits of a0 and b0 are distinct. This completes the proof of the

theorem.

Corollary 3.3. If f has an (n + 1)-periodic loop, n • 3, f has two distinct

n-periodic loops.

Theorem 3.4. L()L(4) L(3) ... ().

, ' I0 %. - ..-
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Proof. If f has an infinite loop satisfying

x0 < ... < x_2 < x_1,

the subset {x0 , Xl,...,Xn, n & 3, satisfies

x < x-n <... < x_ < x_1,

and is, therefore, a loop of order n. By Theorem 3.3, L(n) holds. Hence
.~..

L(.) >L(n). By Corollary 3.3, L(n) > L(n-1). The implications

L(3) :> P(5) ==> P(7) ==> ... follow from Sarkovskii's theorem. Finally, to

prove the implication P(2n+l) ==> L -) for every n h 1, we note that if

C = (x0, x1, ...,X2n) is a (2n + 1)-periodic orbit, then n(C
+) * n(C-), so that

the hypothesis of either Theorem 3.1 or Theorem 3.2 is satisfied. In the first

case L 2(-) holds by Theorem 3.1. In the second case, Theorem 3.2 implies that

L(o) holds, and hence that L(3) holds. Now for any three-periodic orbit, the

hypothesis of Theorem 3.1 holds trivially. Hence L2(a) holds. This completes

the proof.
ok o= k .) k  -k+1 1

Corollary 3.4 ... - ==>L2 (3) ==>p(2k.5) ==>P(2 .7) ==>...L 2 (-).

Proof. This follows from Theorem 3.4 and Lemma 2.3.

Proof of Theorem (SR). Theorem (SR) follows by combining Theorem 3.4,

Corol)--y 3.4, Lemma 2.3 and Sarkovskii's theorem.

IV. REMARKS

1. Theorem (SR) is a step in the direction of obtaining a complete

refinement of Sarkovskii's theorem that takes into account the orbit types of

each period n. A periodic loop is only one of the orbit types of a given

period. That certain orbit types imply the existence of infinite loops is

implicit in Theorem 3.2 and is strikingly illustrated by the example f(x) =

ax(l -Ix). f has the four-periodic orbit A -l, where a 4.411138875
2-4 , -

is given by

%_ 11/3
a-1 = 1 59 1 1191

2 (2+2 27 2 2 L57

t--_
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This orbit satisfies the conditions of Theorem 3.2 and hence guarantees the

existence of two infinite loops as well as two periodic loops of each period

n h 3 by Theorem (SR). The results of 5 ensure for this example merely -

the existence of a three-periodic orbit. apo o c h

2. The results in this paper offer a novel approach to detecting chaos.

Most practical methods for detecting chaos rely, either implicitly or explicitly,

on the existence of odd periodic orbits.2 ,",", s  However, lemmas 2.1 and

2.2 can be used by finding only a few predecessors of a critical point. Lemma

2.2, in particular, is independent of odd periods. A notable illustration is the

example f(x) = x2 - a, for which at* = 1 - ..
8* = 2 + ( 3,653 + 17 - 3,3 - 17)]

La(-) holds, with no odd period z 1 being present.
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